Pediatric Kidney Transplantation as a Potential Clinical Model of Acute Kidney Injury

Kyle Merrill, MD¹, Cassie Kirby, BA², Teresa Ambrosino³, Charles Varnell, MD, MS¹, Lakhmir Chawla, MD⁴, David Hooper, MD, MS¹, Stuart Goldstein, MD²

¹Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center; ²Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center; ³Transplant Administration, Cinciinati Children's Hospital Medical Center, ⁴Veterans Affairs Medical Center, Department of Medicine, San Diego, CA

Background

- Ischemia Reperfusion Injury (IRI) is a mechanism of Acute Kidney Injury (AKI)
- Similar to cardiopulmonary bypass, kidney transplantation can • be thought of as controlled IRI
- IRI during kidney transplantation results in acute tubular necrosis (ATN) and may lead to delayed graft function (DGF)
- Therefore, we sought to investigate kidney transplantation in

Predictors of Delayed Graft Function

	Delayed Graft Function (n=10)	No Delayed Graft Function (n=80)	Univariate P value	<i>Multi-</i> variable P value
Demographics				
Male	5 (50%)	47 (59%)	0.74	
African American	2 (20%)	9 (11%)	0.35	
Age at Transplant (y)*	14.3 (9.6 – 17.3)	11.5 (4.1 – 16.3)	0.18	0.85
BMI at Transplant*	21.6 (16.6 – 29.8)	17.6 (16.3 – 19.9)	0.17	0.1
Primary Glomerular Diagnosis	5 (50%)	26 (33%)	0.3	
Prior Kidney Transplant	0	6 (8%)	1	
Pre-Transplant Dialysis	9 (90%)	59 (74%)	0.44	
Pre-Transplant cPRA (%)*	0 (0 – 0)	0 (0 – 1.3)	0.48	
Deceased Donor Organ	8 (80%)	41 (51%)	0.1	0.047
Machine Perfusion	0 (0%)	18 (44%)	0.02	
KDPI (%)*	20 (10.8 – 26)	11 (5 – 20)	0.14	
HLA Mismatch				
Total*	4 (3.3 – 4.8)	3 (2 – 5)	0.52	
0 MM	0	1	1	
1-5 MM	10	77		
6 MM	0	2		
Ischemia Time*				
Cold Ischemia	442.5 (350.8 – 670.5)	271 (41.3 – 788)	0.15	0.19
Warm Ischemia	51 (45 – 56.8)	37 (30 – 43)	0.0009	0.0064
Total Ischemia	497 (397.5 – 738.5)	305.5 (80.3 – 827)	0.13	
T-Cell Depleting Induction	2 (20%)	14 (18%)	1	

pediatric patients as a model of AKI and identify predictors of DGF

Methods

- Retrospective and prospective observational cohort study
- Study timeframe: 11/1/2017 11/30/2021
- Prospective Enrollment started 7/1/2020
- Prospective patients had urine collected for future biomarker testing
- **Inclusion Criteria:** •
 - Patients aged 3 months to 26 years
 - Kidney transplantation at CCHMC
- **Exclusion Criteria:**
 - Multi-organ transplantation
 - Positive urine culture treated for UTI (prospective only)
 - Did not provide informed consent (prospective only)
- DGF defined as receiving hemodialysis or continuous kidney replacement therapy (CKRT) within 7 days of transplantation
- Statistics:

- Categorical data analyzed using Fischer's Exact Test
- Continuous data analyzed using Wilcoxon Rank Sum Test •
- Significance level set at 0.05
- Multivariable analysis completed using univariate predictors with p value <0.2 and of clinical significance

Results

- 10/90 (11%) of patients developed DGF
- Patients with DGF had:
 - Longer warm ischemia times (51 vs 37 minutes)
 - No difference in cold or total ischemia times
- Patients with DGF who received deceased donor organs were \bullet less likely to receive machine perfusion prior to transplant
- Multivariable analysis revealed that deceased donor organ and warm ischemia time was associated with the development of

*(median, IQR)

Conclusions

- The 11% of patients who developed DGF were found to have \bullet longer warm ischemia times.
- Those with DGF were less likely too have received machine perfusion prior to deceased donor kidney transplantation.
- Predictors of DGF included deceased donor organ and warm ischemia time on multivariable analysis

Future Directions

- Urine collected on serial days for those in the prospective portion of the study
- A total of 30 patients had urine collected
- Urine will be run for Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Kidney Injury Marker 1 (KIM-1)
- Analysis of urinary biomarkers to evaluate IRI during pediatric

